
Access to the DARIAH Bit Preservation Service for
Humanities Research Data

Danah Tonne

Karlsruhe Institute of Technology

Karlsruhe, Germany

Email: danah.tonne@kit.edu

Jedrzej Rybicki

Forschungszentrum Jülich

Jülich, Germany

Stefan E. Funk

Göttingen State and

University Library

Göttingen, Germany

Peter Gietz

DAASI International

Tübingen, Germany

Abstract—Sustainable management of large amounts of re-
search data is gaining in importance for research projects all
over the world. The European project DARIAH aims to address
this topic for the arts and humanities community.

The DARIAH Bit Preservation, as a part of an archiving sys-
tem for the arts and humanities, allows for a high performance,
sustainable, and distributed storage of research data as basis of
virtual research environments. A great challenge in designing
such a service is to provide a standardized, consistent yet easy-
to-use API for accessing the data that remains stable even if
backend technology changes over time.

As a solution, this paper presents the RESTful API of the
DARIAH Bit Preservation which includes an administrative
extension, and which is secured by an Authentication and Au-
thorization Infrastructure (AAI) based on SAML. An exemplary
implementation illustrates that the API offers distributed access
by usage of the HTTP protocol and is able to handle a high
number of files. Data transfer rates of up to 45 MB/s were
achieved for uploading large files in the local network.

I. INTRODUCTION

DARIAH (Digital Research Infrastructure for the Arts and

Humanities) [1] is a European project on the ESFRI roadmap

(European Strategy Forum On Research Infrastructures) [2]. It

aims to support and enhance digitally-enabled research across

the digital humanities community, wherefore a sustainable,

distributed research infrastructure is built and maintained. An

essential component of the infrastructure is a long-term storage

service serving a wide variety of disciplines and accounting

for their special requirements. Some examples of research

endeavors DARIAH deals with on every-day basis are:

• A musicological project provides a complete overview

of the work of one composer including scores, letters or

recordings of an orchestra.

• A scholar working in Jewish studies analyzes an old Jew-

ish graveyard. Therefore he has to deal with inscriptions

which have to be translated and access maps or chronicles

from different decades.

• A digitization project establishes a virtual library com-

prising of manuscripts that have been spread all over the

world.

• An archaeologist virtually reconstructs buildings from

their remains. The data from results of the excavations

will be used to create 3D models of the landscapes and

buildings.

All these different research initiatives have one thing in

common: they rely on accessible, reliable long-term data

storage. The concrete requirements posed by each of the

projects can be, however, very different. The data from these

projects and scholars differs in size (a few kilobytes for a

text file containing a letter or several gigabytes for a film

record of an opera), quantity (a few image files of a rare

and valuable manuscript up to several millions of image

files of a whole library) and type as there is a variety of

different formats for text, image, audio, and movies. This list

is non-exhaustive but the examples illustrate the heterogeneity

of the data to be handled in the DARIAH project and the

digital humanities in general. Humanities disciplines nowadays

generate and analyze an increasing amount of data. At least

parts of their research process therefore become more and

more data-intensive and have to be supported by emerging

research infrastructures.

Long-term storage as a basic service should be as generic as

possible to satisfy the respective requirements of all humanities

scholars, such as those described in the examples above.

The DARIAH Bit Preservation (DBP) aims to design and

implement a system for a sustainable, safe and persistent

storage of research data. In this case the term Bit Preservation

differs from the common understanding as it includes the

following features:

• The humanities scholars store files long-term and only

administrative meta data is handled.

• Heterogeneous data is handled, independent of size, for-

mat or content.

• Mostly create and read operations are performed, updat-

ing and deleting is possible but not used that often.

• Mechanisms to ensure data integrity are provided.

• A distributed system with both human and machine

interface offering high-performance access is needed.

• The system is secured by an Authentication and Autho-

rization Infrastructure (AAI).

Figure 1 depicts a high-level model of the DBP. The service

is organized in layers and components to get a clear separation

of functionalities. The undermost layer is formed by resources

like disk storage, tape storage, and data bases. Storage resource

federations are handled on this level to be completely hidden

from the end-users. On top of the resources are generic Basic

2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

1066-6192/12 $26.00 © 2012 IEEE

DOI 10.1109/PDP.2013.12

9

2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

1066-6192/12 $26.00 © 2012 IEEE

DOI 10.1109/PDP.2013.12

9

Data Services, namely Storage Virtualization and the Meta

Data Service which use the existing resources to store the

data and the meta data. The Storage Virtualization abstracts

the resources by providing a logical namespace and offers

mechanisms to ensure the data integrity. The Meta Data Ser-

vice stores administrative meta data for each file independent

from the underlying data base. The Data Management and

Repository Service in the layer above orchestrates the Basic

Data Services and includes mechanisms for AAI. The Access

Layer offers APIs for accessing the storage and parts of the

AAI. Clients represent the topmost layer. User applications,

a standalone web browser or DARIAH High Level Services

offer more specific functionalities and use the DBP as a storage

backend.

Fig. 1: Architectural overview of the DARIAH Bit Preserva-

tion service

II. RELATED WORK

In order to build a sustainable storage infrastructure it is

essential to provide a standardized API for the user access.

This API has to be consistent, since every change needs to be

adopted on the client-side. In terms of the DBP service the API

is part of the Access Layer. Due to the usage in the arts and

humanities community several additional requirements have to

be met by such an API:

• The API should only cover basic functionalities for file

handling.

• The API should be as easy-to-use as possible.

• The API should hide the complexity of the storage

system.

In principle it is possible to use existing, well-established

data-access APIs, for example Amazon Simple Storage Ser-

vice (S3) [3], Cloud Data Management Interface (CDMI) [4],

Merritt Storage Service Interface [5] or the DataOne API [6].

They all offer methods for uploading, updating, downloading,

and deleting files as needed, but they allow users to directly

access storage nodes of the underlying system and offer

functionalities for replication. As stated in the requirements

the complexity of the storage system and the responsibility

for the replication has to be hidden from the user to provide

an interface as easy-to-use as possible. Additionally the afore

mentioned APIs offer functionalities which are not part of

the DBP such as versioning, searching, listing of files, user

rights management, persistent identifier (PID) [7] handling

or format information. They are contrary to the limitation

of basic file handling and will be offered by DARIAH High

Level Services. Conceptually the DBP constitutes a basis for

more specific services and therefore includes only the most

elementary functions.

Data management systems like iRODS [8] or dCache [9]

already offer most of the functionalities desired for the DBP.

Their APIs can be theoretically adapted for the use in the

Access Layer but they also reveal too much of the complexity

inside the storage system and are too comprehensive. For

example in the case of iRODS information about different

storage resources or methods for replication are provided, in

case of dCache a buffer can be used and altered by the client.

Again, both systems and APIs offer functionalities which are

not part of the DBP. Additionally they are not consistent

enough: They can change in future development of the data

management system or they can even be no longer maintained.

A sustainable DBP service has to keep any changes hidden

from the user by allowing access to the data in the storage via

an consistent interface, independent from the storage backend

used or changes in the backend’s API.

The usage of an existing API therefore is not an option for

the DBP as not all requirements are met. Thus a new API had

to be specified, namely the Storage API.

III. METHODS OF THE STORAGE API

This section provides a user-driven overview of the API, a

more detailed description of the programming interface can be

found in its publicly available specification [10].

The DARIAH Storage API is implemented in RESTful

style [11] and based on the HTTP protocol. It particularly

conforms with RFC 2616 [12] with regard to error codes

and method semantics. The DBP naturally uses the notion

of resources and representations of resources, therefore using

a RESTful, resource-oriented architectural style is logical.

The rationale behind the decision of using HTTP is the

wide spread, the usability from every location and the easy

implementation with many techniques.

By using HTTP the API is bounded to a list of methods with

certain semantics. The methods POST, PUT, GET, HEAD,

DELETE, and OPTIONS are used within DBP and the fol-

lowing description is mainly about defining the resources on

which the methods can be called upon. To efficiently handle

the heterogeneous data the notion BLOBs (Binary Large

Objects) is used. The Storage API provides a set of methods

to manipulate a “flat collection” of such BLOBs. It is not the

intention to provide an abstraction of hierarchical collections

as such abstractions will be managed by the DARIAH High

Level Services (see figure 1) on top of the DBP.

1010

Each BLOB has a unique identifier which is used in

the URL to define a resource the user wants to manipu-

late. Therefore the URL scheme for the API has the form

http(s)://<storage-service>/<objectID>. The objectID must

be unique across the service to avoid conflicts between users.

The simplest way of assuring this condition is to delegate

the assignment of the objectID to the service and not the

user herself. In the DBP the objectID for the new content

is therefore assigned upon upload.

A new file is uploaded to the service by issuing a HTTP

POST request on the service URL and providing the content

in the message body. If the user is not authenticated or not

authorized, the service will reject the request and respond with

a proper error code (401 - Unauthorized). The authentication

and authorization process will be described in section IV-B; for

the following it is assumed that the user is authenticated and

has the rights to upload content. In this case the DBP service

will accept the content, generate a unique object identifier and

respond with 201 - Created. The header of the response will

also include a field Location pointing to the URL including

the objectID generated where the content uploaded can be

accessed by subsequent GET requests.

In order to modify content of an existing object in the

storage, the user needs to follow the REST approach. She first

has to retrieve content with a GET, modify its representation

locally and upload the new version with a PUT to the same

location. According to the HTTP specification PUT is an

idempotent method i. e., a series of the same PUT operation

on a given resource will have the same result as one PUT

operation. This feature is often used to achieve the reliability

of a RESTful interface. In case of an error the user might not

receive a proper response from the server (201 - Created), she

can then simply resend the same request to assure that the

content is uploaded.

Removal of an object from the service is done in a very

similar way to the updates. The user issues a DELETE request

on a resource URL. The server responds with 204 - No

Content. DELETE is also an idempotent method, thus it is

possible to send multiple DELETE requests using the same

objectID. The server will always respond with 204, even if

the object has been removed in a prior attempt.

The two remaining HTTP methods are OPTIONS and

HEAD. HEAD is very useful when dealing with larger data

objects. It allows to get information about an object without

retrieving its content. The response for a HEAD request is

exactly the same as for a GET request with one significant

difference: there is no response body, only the header is sent

back. Thus the client can for instance first get the header of

the file and check the last modification date or the size before

deciding whether or not to retrieve the content. The other

possible usage is to send a HEAD request to find out whether

a content with a given objectID exists on the server. There

is an almost unlimited number of valid URLs as specified by

the API and the API will return well-defined responses. A

request for a non-existing content, done either by GET or

HEAD, will result in the response 404 - Not Found. The

OPTIONS method offers a simple way of checking which

methods are implemented for a given resource. For each proper

URL of the service an OPTIONS request can be sent and the

server responds with a list of methods allowed. For example

executing an OPTIONS request on the location of an existing

object will result in a list composed of OPTIONS, GET,

HEAD, PUT, and DELETE. POST is only allowed on the

service root URL.

IV. EXTENSIONS

As the Storage API is providing mere storage functionalities

an additional API is needed to address Bit Preservation mech-

anisms provided by the DBP implementations. Additionally

both APIs need to be secured as potentially sensitive data and

information is provided.

A. Bit Preservation Admin API

The Bit Preservation Admin API is an administrative inter-

face to determine selected Bit Preservation configurations and

to get information about the data stored. This section gives a

brief overview of the API, its complete specification is publicly

available.

The Admin API is also based on the REST architectural

style and the HTTP protocol to be compliant with the Stor-

age API. The general form of request is http(s)://<storage-

service>/admin/<objectID>, whereat admin specifies the en-

try point for the Admin API. The HTTP methods PUT and

GET are provided to interact with the Bit Preservation part of

the storage.

The configuration of Bit Preservation mechanisms offers

three possibilities to modify the parameters of the DBP. A

user has the opportunity to determine the Bit Preservation level

of the data stored, which translates to the number of replicas

stored, to different checksum algorithms and to the interval for

integrity checks. These levels are defined by the hosting insti-

tution of the DBP implementation. The user can additionally

mark her data as archivable and thereby accept longer access

times as the data can then be moved to near-line or off-line

storage. An administrator of the DBP implementation is able

to trigger additional data integrity checks as needed.

For these features an HTTP PUT request is used. All

values are set to a default value while ingesting the data with

the Storage API. The PUT request must contain the service

addressed, the objectID of the file, a configuration file for

which an XML schema can be found in the specification, and

the content-type for the configuration file sent.

Different information about the data and the Bit Preservation

mechanisms can be accessed by a user or administrator of the

DBP implementation: the Bit Preservation level assigned to the

file, the number and location of the replicas, the archivability

of the file, the checksum of the file and the algorithm used,

the interval of data integrity checks, and the date of the last

one.

For this information an HTTP GET request is used. The

request must contain the service addressed and the objectID

1111

of the file for which the information should be retrieved. Op-

tional is the statement which content-type of the information

requested will be accepted. The request http(s)://<storage-

service>/admin/<objectID> returns all information stored

about the file. Requests for individual elements are realized by

using extensions of the request URL. A complete list of the

extensions and an XML schema for the information delivered

can be found in the specification.

B. Authentication and Authorization Infrastructure

The DBP is integrated with the DARIAH Authentication

and Authorization Infrastructure (AAI), which is based on

the SAML standard [13] that allows federated identity man-

agement. Thus not only users registered in the DARIAH

user management can access the DBP, but any user who

can authenticate within a higher education federation via her

campus account and who is authorized to use the service.

Here the general issue had to be overcome, that within the

campus management no information is stored that can be

used for authorization purposes, for example service-specific

roles. Therefore the concept of a Virtual Organization [14] that

origins from a PKI-based security infrastructure of Grid com-

puting has been adopted to the SAML-based infrastructure by

using SAML 2.0 attribute queries and the attribute aggregation

feature of the Shibboleth Service Provider (SP).

The DARIAH SPs first collect the authentication informa-

tion and a persistent ID from the campus Identity Provider

(IdP). It then queries additional authorization attributes from

the DARIAH IdP. At the IdP side privileges are being managed

via group memberships in the LDAP [15] based backend and

released by the IdP as entitlement attributes. Through the SP

the DARIAH application - in this case the DBP implementa-

tion - gets all information as an aggregation of attributes, upon

which it can decide whether the user is authorized to use the

service or not.

The current group management allows for read and/or write

privileges for the whole service. If the single data objects are

to be protected by the AAI, an external Policy Decision Point

(PDP) can be deployed. The DBP as the Policy Enforcement

Point (PEP) can ask the PDP whether a particular user is

allowed to perform a particular API method on a particular

object.

In addition to the browser based SAML Web SSO profile

the SAML Enhanced Client Proxy Profile (ECP) [16] has been

implemented for cases when the user does not directly access

the DBP via a browser based GUI, but via a web service

based user application. Currently other methods than ECP for

integrating web services into a SAML based infrastructure are

being evaluated.

V. IMPLEMENTATION

For implementing the Storage and the Admin API different

components were chosen to fulfill the requirements of the

elements of the DBP architecture. The implementation is

realized in Java to be independent from the operating system

and therefore one criterion for the components chosen, besides

being wide-spread and open-source, was to be addressable via

a Java API.

A. Components

iRODS, the integrated Rule-Oriented Data System [8] is

an open-source data management system. It offers a logical

namespace independent from the underlying storage and is

therefore used as Storage Virtualization Service. An iRODS

instance can be accessed via Jargon [17], a Java client API

which offers methods to handle files according to the needs

of the DBP. MySQL [18] is an open-source data base and used

as Meta Data Service to store all administrative meta data for

the files. The connection is established with JDBC [19] to

abstract from the specific data base. EclipseLink or the Eclipse

Persistence Services Project [20] is the open-source reference

implementation of the Java Persistence API (JPA) 2.0 specified

in JSR 317 [21]. JPA offers a standard interface for building

and managing persistent Java objects and is in this case used

to read or write the administrative meta data to the data base.

Jersey [22] is the open-source reference implementation of the

JAX-RS (JRS 311) [23] standard. Among other things it offers

special annotations and a testing environment for a simple

way of creating RESTful web services. Apache Tomcat [24]

is an open-source implementation of the Java Servlet [25] and

JavaServer Pages [26] specifications and includes a full HTTP

web server. The opportunity to execute Java code on this server

is used to provide the implementation to the clients.

The DBP architecture and the implementation itself are de-

signed in a way that all components described are principally

substitutable. Therefore the implementation is not restricted

to the components mentioned above but the developer can

use her software preferred. Every web server which is able to

execute Java code can be used instead of the Apache Tomcat

without any modifications in the implementation. iRODS can

for example be substituted by dCache [9], or even a file system

or a tape system. Instead of a MySQL instance another data

base like PostgreSQL [27], Oracle [28], or again a file system

can be used instead. These modifications would only result in

slight changes in the implementation as the code is modular

and includes abstraction layers.

B. Implementation

According to the six HTTP methods described in section

III the implementation provides six methods which are tagged

by the specific annotation @POST, @PUT, @GET, @HEAD,

@DELETE or @OPTIONS to offer the HTTP functionalities.

The annotation @PATH specifies the relative path for each

method and therefore determines where the method is pro-

vided.

The POST method (figure 2a) creates a new file on the

server. At first administrative meta data is saved in the data

base, namely the content-type of the file provided by the

request, the storage virtualization system used, the logical file

path depending on the storage virtualization system where the

file will be stored, a suffix for the updating operation, the last

modified time set as the current system time, the persistent

1212

(a) Implementation of POST

(b) Implementation of PUT

(c) Implementation of GET (d) Implementation of DELETE

Fig. 2: Implementation of four of the HTTP methods described

identifier (PID) if provided by the request, and a flag to lock

the file which is set to “false” by default. The data base is in

charge of creating and returning a unique id, which is used

as a filename for the file uploaded. The file is then stored in

the storage virtualization system which returns the checksum

which is currently computed with the MD5 algorithm. This

checksum is additionally used as an ETag to determine if the

file was changed. Finally 201 - Created is returned to the user

including the header fields specified.

The PUT method (figure 2b) updates a file on the server.

At first it is checked whether the file exists on the server,

if not 404 - Not Found is returned. If the file is already

locked or has been modified, 409 - Conflict is sent to the

user. The file is then locked via the flag in the data base

that no concurrent update or delete can take place. The file

is stored in the storage virtualization system with a different

suffix than the file to be updated. If the transfer completes

without failure, administrative meta data, namely the suffix,

the last modified date, the ETag, and if provided, the PID are

updated. A GET request will now return the file updated. The

old version is deleted from the storage and the file is unlocked.

Finally 201 - Created is returned to the user including the

necessary header fields. If an error occurs during the operation,

the file is unlocked automatically and the user has the chance

to update the file again.

The GET method (figure 2c) downloads a file from the

server. At first it is checked whether the file exists on the

server, if not 404 - Not Found is returned. Another check

determines whether the file has been updated since the last

GET by comparing the ETag or last modified date if provided

by the request. If no update has taken place, 304 - Not

Modified is sent and the file is not transferred. Otherwise

the file and the meta data are fetched from the storage

virtualization system and the data base to be provided to the

user with 200 - OK.

The HEAD method downloads the meta data of a file from

the server. It is implemented in the exact same way as the

GET method with the difference that getting the file from the

storage virtualization system and delivering it to the user is

skipped.

The DELETE method (figure 2d) deletes a file on the server.

At first it is checked whether the file exists on the server, if not

404 - Not Found is returned. If the file is currently updated, the

status code 409 - Conflict is sent. Otherwise the administrative

meta data and the file in the storage virtualization system are

then deleted and a 204 - No Content is returned with the

necessary header fields to the user.

The OPTIONS method returns the implemented methods

for the Bit Preservation implementation, which is included by

default in Jersey and needs no further implementation.

VI. PERFORMANCE

The DBP has been deployed on a dual quad core server with

96 GB RAM and 8 TB of storage to test the implementation

without AAI. The clients used run on a standard workstation

1313

at the same location connected by a 1 gigabit ethernet network

to the server.

Table I concentrates on the four most important methods

for handling files. Several 1 MB files were uploaded and

further handled, at least two dozen times each, using the client

cURL for the Storage API and the iRODS client iCommands.

The comparison to the iRODS system was chosen because

the current implementation of the Storage API uses such a

system as storage virtualization. In this scenario the respective

method is examined without concurrent operations as this

is the main use case for the arts and humanities. The time

between sending the request and receiving the response was

measured and averaged. Using a standalone iRODS system is

in general faster than using the Storage API as the Storage API

includes additional meta data handling and Bit Preservation

mechanisms such as computation of the checksum for the

upload and update operation. For the download operation the

time only differs slightly as just minimal meta data operations

are executed.

TABLE I: Average times for uploading, updating, downloading

and deleting a 1 MB file via the Storage API and the iRODS

API

Method Storage API iRODS
upload 113 ms 67 ms
update 141 ms 66 ms

download 138 ms 135 ms
delete 71 ms 54 ms

To analyze the administrative overhead caused by checks,

meta data handling, Bit Preservation mechanisms, and building

the proper responses as described in V-B several files with dif-

ferent file sizes were uploaded via cURL and the Storage API.

The time needed for administrative operations is measured via

time stamps within the code and is related to the time needed

for storing the file in the iRODS system which is measured in

the same way.

TABLE II: Average times for uploading files with various

sizes via the Storage API split to administrative overhead and

storage

File Size Administrative Storage Overhead [rel.]
10 KB 11 ms 65 ms 17%

100 KB 12 ms 68 ms 18%
1 MB 14 ms 101 ms 14%

10 MB 26 ms 274 ms 9%
100 MB 37 ms 2075 ms 2%

1 GB 27 ms 22129 ms 0,1%

Regarding various file sizes the relative administrative over-

head decreases with increasing file sizes as shown in table II

because the time needed for storing the file in the iRODS

system increases rapidly and gets the main part of the overall

time. The additional time for meta data handling measured

shows a large variance for large files. A few are comparable

to the times needed for small files but the average time needed

increases unexpectedly. For small files (10KB and 100KB) the

overall time needed only differs slightly. Small outlier due to

the network or system processes have a huge impact here and

probably cause the differences. The time for storing the file

does not increase with the same factor as the file sizes. This

is due to the fact, that iRODS itself produces an overhead by

creating logical file names and the mappings to the physical

file names.

VII. CONCLUSIONS

This paper presents the DARIAH Storage API, a novel

interface for storing research data in the Bit Preservation

service of the DARIAH project. This API offers a standardized

and easy-to-use way to access data even if backend technology

changes over time. A first version including all six HTTP

methods and a basic version of the Admin API have been

implemented and secured by the DARIAH AAI. Tests with

about 50 thousand files of various sizes were successfully

conducted.

The DBP implementation offers a long-term storage with

mechanisms like replication and checksums to ensure data

integrity. Due to the usage of BLOBs heterogeneous data

with different sizes, formats, and contents can be handled.

Only administrative meta data for data management purposes

is stored in the internal data base, all scientific meta data for

the scholar’s research is treated as a file. By offering the HTTP

methods CRUD operations (create, retrieve, update, delete) can

be executed easily and the system can be accessed through

the web. All complexity and technology changes inside the

system are hidden to achieve an interface as easy-to-use and

persistent as possible. Additionally the exchangeability of the

hidden components improves the sustainability of the system,

which is further supported by the complete integration into the

DARIAH infrastructure.

The design of the DBP results in a distributed, generic

system which will be reused by other research communities,

for example in the Large Scale Data Facility (LSDF) [29] and

Large Scale Data And Analysis (LSDMA) projects, which

aim to support data-intensive research projects of various

communities.

Even though the DBP implementation includes an overhead

due to administrative operations according the performance

evaluation and the HTTP protocol limits the transfer rates, the

time needed for file operations in the DBP are acceptable. As

a new functionality to deal with larger resources even more

efficiently, partial GET can be supported in the future. A client

will then be able to request only a subset of bytes for a given

resource. Additionally since the process of ingesting data can

take more time, the API can support asynchronous uploads.

In such cases the server will response to a POST request with

202 - Accepted and the URL for the resource which will be

created later.

The DBP implementation which offers the methods speci-

fied by the API is an important part of the humanities research

process and therefore for all humanities research projects,

but is not yet sufficient. Additional features such as usage

of persistent identifiers, format identification, technical meta

data extraction, versioning, listing of files or searching need

1414

to be provided by Higher Level Services which have to be

implemented as a next step. The DBP as a hidden basic service

will be integrated seamlessly in such DARIAH High Level

Services to provide a comprehensive storage service to the

humanities scholars.

ACKNOWLEDGEMENTS

The authors wish to thank all people and institutions in-

volved in defining and setting up this project. Especially this

work has been supported by DARIAH-DE which is partially

funded by the German Federal Ministry of Education and

Research (BMBF) under the D-Grid initiative by agreement

01UG1110A-M and by DARIAH-EU funded by the European

Union under the Seventh Framework Programme, contract

number RI211583. Additionally this work is supported by the

Helmholtz Portfolio Extension ”Large Scale Data Management

and Analysis” with contributions of the Data Life Cycle Lab

”Key Technologies” and the ”Data Services Integration Team”.

REFERENCES

[1] (2012, August) DARIAH-EU. [Online]. Available: {http://www.dariah.
eu}

[2] (2012, August) ESFRI. [Online]. Available: {http://ec.europa.eu/
research/infrastructures/}

[3] (2012, August) Amazon S3. [Online]. Available: {http://awsdocs.s3.
amazonaws.com/S3/latest/s3-api.pdf}

[4] (2012, August) CDMI. [Online]. Available: {http://snia.org/sites/default/
files/CDMI\%20v1.0.2.pdf}

[5] (2012, August) Merritt Storage Service. [Online]. Available:
{https://confluence.ucop.edu/download/attachments/16744547/
Merritt-storage-service-latest.pdf?version=7&modificationDate=
1320361737000}

[6] (2012, August) Data One. [Online]. Available: {http://mule1.dataone.
org/ArchitectureDocs-current/apis/REST overview.html}

[7] H. Neuroth, A. Oßwald, R. Scheffel, S. Strathmann, and M. Jehn,
nestor-Handbuch: Eine kleine Enzyklopaedie der digitalen
Langzeitarchivierung, 2009, ch. 9.4: Persistent Idetifier (PI) - ein
Überblick, Available: http://nestor.sub.uni-goettingen.de/handbuch/.

[8] R. Moore and A. Rajasekar, “iRODS: Integrated Rule-Oriented Data
System,” September 2008, (White Paper).

[9] M. Ernst, P. Fuhrmann, M. Gasthuber, T. Mkrtchyan, and C. Waldman,
“dCache, a distributed data storage caching system,” in Computing
in High Energy and Nuclear Physics (CHEP 2001), Beijing,China,
September 2001.

[10] Available: http://hdl.handle.net/11858/00-1734-0000-0009-FEA1-D.
[11] R. T. Fielding, “Architectural Styles and the Design of Network-based

Software Architectures,” dissertation, University of California, Irvine,
2000.

[12] R. Fielding, J. C. Mogul, H. Frystyk, L. Masinter, P. Leach, and B. T.
Lee, “RFC 2616, Hypertext Transfer Protocol – HTTP/1.1,” June 1999.
[Online]. Available: {http://www.ietf.org/rfc/rfc2616.txt}

[13] S. Cantor, J. Kemp, R. Philpott, and E. Maler, “Assertions and
Protocols for the OASIS Security Assertion Markup Language
(SAML) V2.0,” Tech. Rep., Mar. 2005. [Online]. Available: {http:
//docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf}

[14] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations,” International Journal of High
Performance Computing Applications, vol. 15, no. 3, pp. 200–222, Aug.
2001. [Online]. Available: {http://www.globus.org/alliance/publications/
papers/anatomy.pdf}

[15] K. Zeilenga, “Lightweight Directory Access Protocol (LDAP):
Technical Specification Road Map,” June 2006, IETF RFC 4510.
[Online]. Available: {http://www.ietf.org/rfc/rfc4510.txt}

[16] S. Cantor et al., “SAML ECP profile schema,” OASIS SSTC,
March 2005, Document ID saml-schema-ecp-2.0. [Online]. Available:
{http://www.oasis-open.org/committees/security/}

[17] (2012, August) Jargon. [Online]. Available: {https://www.irods.org/
index.php/Jargon}

[18] (2012, August) MySQL. [Online]. Available: {http://www.mysql.com/}
[19] (2012, August) JDBC. [Online]. Available: {http://www.oracle.com/

technetwork/java/overview-141217.html}
[20] (2012, August) EclipseLink. [Online]. Available: {http://www.eclipse.

org/eclipselink/}
[21] L. Demichiel, “JSR 317: Java Persistence API, Version 2.0,” Tech. Rep.,

2008. [Online]. Available: {http://jcp.org/aboutJava/communityprocess/
final/jsr317/}

[22] (2012, August) Jersey. [Online]. Available: {http://jersey.java.net/}
[23] “JAX-RS: Java API for RESTful Web Services,” September 2009.

[Online]. Available: {http://jsr311.java.net/}
[24] (2012, August) Apache Tomcat. [Online]. Available: {http://tomcat.

apache.org/}
[25] “JSR 315: Java Servlet 3.0 Specification,” December 2009. [Online].

Available: {http://www.oracle.com/technetwork/java/index-jsp-135475.
html}

[26] (2012, August) JavaServer Pages. [Online]. Available: {http://www.
oracle.com/technetwork/java/javaee/jsp/index.html}

[27] (2012, August) PostgreSQL. [Online]. Available: {http://www.
postgresql.org/}

[28] (2012, August) Oracle. [Online]. Available: {http://www.oracle.com/us/
products/database/overview/index.html}

[29] R. Stotzka, V. Hartmann, T. Jejkal, M. Sutter, J. van Wezel, M. Hardt,
A. Garcia, R. Kupsch, and S. Bourov, “Perspective of the Large Scale
Data Facility (LSDF) Supporting Nuclear Fusion Applications,” in
Parallel, Distributed and Network-Based Processing (PDP), 2011 19th
Euromicro International Conference on, Februar 2011, pp. 373 –379.

1515

View publication statsView publication stats

https://www.researchgate.net/publication/261452214

