International

TA4NGI - Evaluation & Design

Version 1.0

Milestone 2

Author:
David Hubner

Co-Authors:
Peter Gietz
Martin Haase

Ali Haider

File name: Evaluation&Design_v1.0.odt
Created on: 15.04.2021
Last change: 15.04.2021

15.04.2021 Evaluation&Design_v1.0 Page 1

Version control:

1.0 15.04.21 David Hubner Version 1.0 including technology
Gi evaluation and implementation
Peter Gletz concept for PoC 1,2 & 3
Martin Haase
Ali Haider

Final acceptance:

1.00

Table of Contents

I a0 o [o 1[0 T 1
1.1 Purpose Of ThiS DOCUMENL.........ccooiiii et 1
1.2 Introduction And Problem Stat@meENt..........coovveiiiiii e 1
G T AN [€ B =0T 0] (= 2
O 7 1 N 2

2 TECIANOIOGY .. .o 3
P20 S =1 F= 10T B 1 =Tod o To] (oo V28R 3

2 It R (=T 1 01T (1 3
2 2 I 1 T 4
P2 G B B 11 1T o 1= 1[0 = o 6
N I Y (5 | 6
a2 N Y, [0 1 AVZ= 1T o 6
A S L= T] 7
A T ST 0] 8
A = P 1 (=Y o YAV o T4 9
PG TS T 1 (0 1= 10
G T N o] 11 (=3 (1 | (= 10
N o] ¢ (= Y4= A O (1) P 11

3 Implementation Concept for the POC............uuiiiiiiiii e 12

3.1 Satosa Module for Authentication With TLS.........ccooiiiiiiiiii e 12
3.1.1 GOAl DESCIIPLION. ... e e e e e ennes 12
T 2 O] o2 =] o | FE PP 12
G0 R T 1 o 15

3.2 Satosa Module for Authentication with Kerberos............ccoovvvvvviiiiiiiiiiiieeeeieeeeee, 15
3.2.1 GOAl DESCIIPLION. ... e e e e e eaes 15
T O] g o1 =] o | F PP 16
T2 T 1 o T 19

3.3 Satosa Module For Authentication With TLS-KDH........ccooovvviiiiiiiiiieeeieeeeeeeveeeeee, 19
3.3.1 GOAl DESCIIPLION. ... e e e e eenas 19
TG 2 O] g 01T o | FE PP 20

3.3.2.1 Goal 1 — Client-Server Hello World Application...........ccccccvveevviiinniiieennnnnnn. 20
3.3.2.2 Goal 2 — TLS-KDH PrOXY.....ccciiiiiieeeie ettt 21
TG T TN 1 o T 24
3.4 Evaluation of TLS-KDH fOr COMEZA.........coieiiiiiieieieiie et aaas 24

YU 01 0 1= Y PP 24

1 Introduction

1.1 Purpose Of This Document

The purpose of this document is to give an introduction to the TA4NGI project funded by
NGI-Pointer, its underlying technology and the scope and goals of the technical proof of
concepts deliverered by the end of the project.

It addresses the project team at DAASI International who is going to work on the
project, stakeholders in the NGI-Pointer project and interested third parties, that want to
follow the progress of TAANGI. While this document contains some technical details of
the underlying protocols and planned implementations, the goal is not to provide a com-
prehensive technical documentation but rather a high level overview.

1.2 Introduction And Problem Statement

TA4NGI aims to evaluate future internet technology for authentication purposes. In that
capacity it aims to integrate new authentication mechanisms in established single sign-
on (SSO) protocols and existing and widely adopted open source software. One of
these promising new specification is TLS-KDH, which combines the strengths of estab-
lished protocols, namely Kerberos, Diffie-Hellmann (DH), and TLS to create a future
proof authentication and encryption mechanism. Future proof particularly refers to suffi-
cient capacities for encryption scheme secure enough to even withstand the challenges
presented by much higher computational capacities as represented in the perspective of
guantum computing. Furthermore, the specification also offers perfect forward secrecy,
i. e. it mitigates risks to the confidentiality of the encrypted data even if the security of
the encryption keys are compromised in the future.

Today, SSO in web scenarios is predominantly achieved relying on open standards,
such as OpenID Connect (OIDC) and SAML 2.0. The open source software Satosa of-
fers support for these protocols based on various Python libraries and is widely used es-
pecially in research and education. Its modular approach allows to connect a wide vari-
ety of applications and to support different authentication mechanisms. While these au-
thentication mechanisms are by default mostly SSO protocols, again (turning Satosa
into a SSO proxy solution), Satosa is not limited to those and can also authenticate
based on e.g. TLS, Kerberos or — which will be the main focus of our work — TLS-KDH.

With TAANGI we plan to implement proof of concepts for Satosa authentication modules
for the following technologies:

1. TLS client certificates
2. Kerberos tickets
3. TLS-KDH

The focus of these modules will be twofold. For the established protocols the solution
should support major user centric scenarios of today. For example, TLS client certifi-

15.04.2021 Evaluation&Design_v1.0 Page 1

cates authentication must support authentication via OpenlID Connect by using certificates
installed in modern web browsers. For the new specification, TLS-KDH, the solution
should evaluate feasible integration scenarios with given constraints in mind. For example,
it is unlikely that web browsers support TLS-KDH in the foreseeable future. Therefore the
proof of concept in this regard will be limited to server-to-server scenarios.

Beyond just authentication, TLS-KDH can also be used for more secure transport layer en-
cryption. This will be evaluated further on a theoretical level for usage in the open source
collaboration and low-code development platform Corteza, e.g. for messaging or CMS use
cases.

1.3 NGI-Pointer

NGI Pointer is an initiative of the European Commission aiming at ,Funding The Next Gen-
eration Ecosystem of Internet Architects“. Basically an attempt to create new technologies
within the European Union, while defining architects as ,people with an ambition of chang-
ing the Internet and Web with European Values at the core”®. NGI Pointer is one of several
such funding schemes under the umbrella of NGI (Next Generation Internet), which aims
at ,an Internet that responds to people’s fundamental needs, including trust, security, and
inclusion, while reflecting the values and the norms all citizens cherish in Europe.“® NGl
had an initial dedicated funding and is now part of the Horizon Europe Programme (2021-
2027). NGI Pointer is a rather focused activity that provides funding for various small
projects with a total spending of 5.6 Million, intended to build practical applications of state-
of-the-art technologies. This was a perfect fit for our ideas on creating a proof of concept
for a very ambitious new technology based on a combination of well established protocols.

1.4 TA4ANGI

TAANGI stands for Trust and Authentication for Next Generation Internet; here trust,
among other things, stands for authenticity and safety from interception; and authentica-
tion stands for securely proving the identity of a user and their rightful ownership of respec-
tive credentials. TAANGI wants to find innovative solutions based on already existing tech-
nologies as an attempt at a rather pragmatic approach.

This kind of approach can be seen in several IETF Drafts of Rick van Rein, especially
,Quantum Relief with TLS and Kerberos“* connected to the Arpa2 Project®. Here such a
higher level of security in TLS encrypted communication is aimed at, that it will still hold
true in the age of quantum computing, which is not so far away from today. In this draft a
solution is proposed that complements the X.509 based encryption by adding Kerberos, as
it builds a symmetric-key infrastructure including cross-realm connectivity options and also
integrating (Elliptic-Curve) Diffie-Hellman for perfect forward secrecy. This approach is
called KDH (Kerberised Diffie-Hellman) and added to the transport security of TLS, thus

See https://pointer.ngi.eu/

dito

See https://www.ngi.eu/about/

Current Version see https://tools.ietf.org/html/draft-vanrein-tls-kdh-06

See http://arpa2.net/

ab~wNE

15.04.2021 Evaluation&Design_v1.0 Seite 2

http://arpa2.net/
https://www.ngi.eu/about/
https://pointer.ngi.eu/

the name TLS-KDH.

TA4ANGI implements TLS-KDH as a proof of concept into an open source SSO-Proxy
called Satosa®. Satosa has a very structured architecture which allows for creating so-
called microservices as plugins. TAANGI will implement such microservices for:

- Backend module to support authentication with TLS client authentication

- Backend module to support authentication with Kerberos

« Implementation of TLS-KDH in Satosa based on the two backends

The fourth deliverable will be an evaluation of transport layer security with TLS-KDH in
Corteza, a new Open Source business application framework with a CRM module and a
low-code development platform; this way introducing an actual use case for this new tech-

nology.

2 Technology

2.1 Related Technology

2.1.1 Kerberos

Kerberos, as an authentication/ single sign-on protocol, dates back to the 80s and was de-
veloped at the MIT, version 5 is latest one. Kerberos5 uses two separate components be-
sides the client and the target service:

- An authentication service (AS) which allows for single sign-on, granting so-called
ticket-granting tickets (TGT), that are short-lived (approximate lifespan of one day)

- Aticket-granting service (TGS) which will similarly create short-lived session keys
for the communication of the client to the target host.

The following table visualises the steps the Kerberos protocol is composed of:

Step AS/TGS Client Target Service
AS-REQ Authenticate e.g. with password hash to AS
AS-REP AS sends client-key-encrypted TGT to Client,
plus TGT-encrypted part for TGS
TGS-REQ Client sends TGT-encrypted part to TGS, includ-
ing target service ID
TGS-REP TGS sends session key encrypted by both the
TGT, and the target service’s key
AP-REQ Client sends target-service-encrypted session key to tar-
get service, plus a session-key-encrypted authenticator
that conveys the client’s ID
AP-REP Service replies with session-key-encrypted authenticator
that conveys the services’ ID

6 See https://github.com/IdentityPython/SATOSA

15.04.2021

Evaluation&Design_v1.0 Seite 3

https://github.com/IdentityPython/SATOSA

Note that the AS-REQ/REP is usually done once per day, and TGS-REQ/REP and AP-
REQ/REP for each service accessed. The result of all steps is a symmetric short-lived ses-
sion key which can be used for the encryption of data between client and service.

Kerberos uses symmetric cryptography only. The following keys are used and known by
the key distribution center (KDC) which is usually bundled with the AS and TGS.:

Long-lived key for user

Long-lived key for target service
Short-lived key for SSO: the TGT
Short-lived session key for data encryption

The symmetric key ciphers currently regarded as secure, and thus recommended, are
AES-256 and Camellia-256, even though currently also 128bit ciphers are considered to
be sufficient in this case, as the keys are are only temporary.

Kerberos does not allow for perfect forward secrecy, although knowledge of the long-lived
keys (for user, or for host) will not allow decryption of past data traffic, since all messages
are encrypted by short-lived session keys. However, this does not hold true for the initial
session key exchange messages: the session key that is used for communication between
client and target host can be uncovered in several circumstances (see table above for the
steps):

A) By uncovering the client’s long-lived key

o 1) If the attacker uncovered the client’s long-lived key, and recorded the AS-
REP, he can decrypt the TGT

o 2) If the attacker uncovered the TGT, and recorded the TGS-REP, he could un-
cover the session key

B) If the attacker uncovered the service’s long-lived key, and recorded the AP-REQ,
he could extract the session key

With the session key compromised by either A) or B), all further communication between
the client and the service can be uncovered. Of course a rogue KDC admin is also able to
intercept such communication rendering it insecure. Thus, PFS is not part of standard Ker-
beros5, although DH is supported in Pkinit.

2.1.2 TLS

TLS is an acronym for Transport Layer Security. TLS is a protocol situated above the
transport layer in the OSI network model. TLS enables two parties to authenticate them-
selves, and communicate with each other while maintaining privacy and data integrity. The
party which initiates the communication becomes the client and the party to which the
communication request is sent becomes the server. TLS can be used to enable secure
communication for any higher level application protocol, for example, HTTP, FTP, SMTP,
etc. TLS enhances the HTTP (Hypertext Transfer Protocol) to become HTTPS where the
added 'S’ stands for security.

15.04.2021 Evaluation&Design_v1.0 Seite 4

TLS enables the authentication of the client and server by exchanging X509 certificates.
An X509 certificate includes a public key of the holder of the certificate and is digitally
signed by a certification authority (CA). The CA is an agreed-upon entity which issues digi-
tal certificates. Each, client and server are in possession of a list of all trusted CAs so they
can verify the authenticity of a digital certificate. Usually on the open-web, only server au-
thentication is required, which only requires a server to transmit its certificate to a client.
This is due to it not being scalable nor convenient for all the clients, mostly browsers, to
configure client certificates. However, in these cases where security and authentication are
paramount, client authentication, more commonly referred to as mutual TLS authentica-
tion, can be used to enforce authentication on both, the server and the client.

TLS uses the symmetric encryption technique to encrypt and decrypt data on the commu-
nication channel. This stands in contrast to the asymmetric encryption/decryption tech-
nique where data is encrypted or decrypted with two distinct keys. Whereas asymmetric
encryption/decryption uses a private key and a public key, the symmetric encryption/de-
cryption uses one key which must be private. Due to the enormous computational capaci-
ties necessary for asymmetric algorithms, using the symmetric encryption technique in
TLS instead considerably increases the performance. Nonetheless, the same private key
needs to be exchanged securely between the client and the server before initiating secure
communication. The initiation of every communication session begins with the TLS hand-
shake in which a shared secret session is exchanged by means of the asymmetric encryp-
tion technique

The following section briefly lists the steps of the TLS handshake:

1. The client sends a “client hello” message which includes the cipher-suits the client
can support. A cipher-suite includes the following:

o TLS protocol version, for example, TLS 1.2, 1.3.
o Key exchange method, for example, DH, RSA, etc.
o Authentication scheme, for example, RSA, ECDSA, etc.

o Cipher: the symmetric cipher which uses the agreed shared session key to en-
crypt/decrypt the network data, for example, AES, GCM/CBC, etc.

o MAC (Message Authentication Code): this hashing algorithm is used by the
client and server for authentication and data integrity purposes, for example,
SHA, MD5, etc.

2. The server selects a cipher-suit and sends a “server hello” message back to the
client. This also includes the server certificate. If the server also requires the client
to authenticate themselves, the message also includes “client certificate request”
which includes a list of supported certificate types and the distinguished names of
acceptable CAs.

3. The client checks the validity of this certificate.

4. The client generates a random byte string, encrypts it with the server public key

15.04.2021 Evaluation&Design_v1.0 Seite 5

within the server certificate, and sends it back to the server. The random string,
which is also known as the pre-master secret, is used by the client and server to
generate the master secret, or shared session key. If the server included the “client
certificate request” with the original message, the client encrypts the random string
with the client's private key instead. It is then sent back together with the client's
digital certificate, or a no digital certificate warning; the handshake would then break
if the client authentication is mandatory.

5. The server verifies the client certificate if “client certificate request” was included.

6. The client sends a “finished” message to the server, which is encrypted with the
shared secret session key, indicating that the client’s part in the handshake is com-
plete.

7. The server sends a “finished” message to the client, which is encrypted with the
shared secret session key, indicating that the server also completed its part in the
handshake.

8. For the duration of the TLS session, the server and client can now exchange mes-
sages which are symmetrically encrypted with the shared secret key.

2.1.3 Diffie-Hellman

Diffie-Hellman is a key exchange method. The essence of the Diffie-Hellman key ex-
change method is that the client and the server need to exchange a shared secret key for
symmetric encryption afterward. The mathematics involved in the Diffie-Hellman algorithm
enable perfect forward secrecy. Perfect forward secrecy is a feature of key exchange
methods which means that even if the private key of secure communication is leaked in
the future, the past session data encrypted with this private key would not be compro-
mised.

In the TLS handshake flow listed above, if an attacker comes into possession of the
server's private key, the attacker can then use the key to decrypt the pre-master secret
generated by the client in step 4 of the TLS handshake. And then further, can generate the
shared session key from this pre-master secret and can eventually decrypt all the session
data. Diffie-Hellman avoids this concern entirely by using some mathematical properties
involving a prime number and a module which can be exposed publicly. The key exchange
algorithm does not rely on either the public key nor the private key of the client/server to
exchange the pre-master secret, and as a result enables perfect forward secrecy.

2.2 TLS-KDH

2.2.1 Motivation

TLS-KDH is an evolving standard protocol for high security authentication and transport
encryption, which aims at security in a future world of quantum computing. It combines
three established technologies to achieve this:

Kerberos, which is an established and secure authentication protocol

15.04.2021 Evaluation&Design_v1.0 Seite 6

TLS, the standardised form of secure socket layers, which provides encryption of
the body load sent via an Internet protocol like HTTP and LDAP, and is based on
X509 asymmetric encryption. It is also used for bidirectional authentication between
server and client, and thus a method to provide secure authentication

DH, Diffie-Hellman key agreement protocol for key establishment featuring perfect
forward secrecy in conjunction with a key-secured hash message authentication
code for achieving mutual authentication and message integrity of the key manage-
ment messages exchanged

Since DH and TLS can be used together since TLS v 1.2, as recommended in RFC 7525,
the real innovation of TLD-KDH is the integration of the Kerberos protocol in order for a
client to be able to use a Kerberos ticket for authentication instead of an X509 client certifi-
cate. This efficiently facilitates using highly secure technology, because the user does not
have to manage their own x509 private key and certificate. Furthermore, using Kerberos
tickets over X509 certificates can be faster and more elegant, since it does not require vali-
dating long CA chains. Also on a fundamental level, using short-lived Kerberos tickets
poses various advantages as opposed to usually long-lived certificates. For example, the
period in which a compromised ticket can be used, is much smaller.

The introduction of Kerberos as the authentication mechanism in TLS may also allow to
use synergies with established Kerberos infrastructures. Sometimes an existing Kerberos
infrastructure might be easier to use than setting up a new CA.

A parallel specification, KRB5-KDH, introduces strong encryption with DH into Kerberos
and builds the foundation for TLS-KDH.

Ultimately, using TLS-KDH enhances the security of authentication and encryption
achieved through these protocols by leveraging the strong authentication mechanisms of
Kerberos and key exchange with DH to enhance these properties in the standard TLS
communication.

2.2.2 KRB5-KDH

KRB5-KDH is a specification which combines Kerberos as an authentication mechanism
and DH as the key exchange mechanism for encryption within Kerberos. While this specifi-
cation can be used on its own, it has strong ties with TLS-KDH and eventually will be used
as one of the components of the latter.

Kerberos offers established and strong authentication. Tickets used to transmit the authen-
tication in Kerberos are usually encrypted. These tickets can contain sensitive information,
as they might at the very least contain the identity of the authenticated user. The encryp-
tion properties can be enhanced by using DH. Thus, DH compliments the Kerberos au-
thentication with its stronger encryption properties and enables perfect forward secrecy.

Using KRB5-KDH, the Kerberos protocol is extended to support the DH key exchange
method to agree on the shared secret for ticket encryption. For that purpose, the following
changes are made to Kerberos “:

7 http:/itls-kdh.arpa2.net/krb5-kdh.html

15.04.2021 Evaluation&Design_v1.0 Seite 7

A new encryption type for a Diffie-Hellman key exchange message;
A new Kerberos5 ticket flag to indicate support for the Diffie-Hellman encryption

type.

Integration on that level leads to minimal changes in the actual Kerberos protocol flow.
This allows to continuously use mechanisms such as GSSAPI and also minimise the
changes required to the existing Kerberos implementations.

The abstract KRB5-KDH protocol flow is demonstrated in . This illustrates the usage of
DH key exchange to acquire a secure shared secret with the perfect forward secrecy prop-
erty:

KDH Client KDH Server
Obtain ticket for server

Construct local DH key

Client -> server: AP_REQ with DH Key exchange in the subkey field

Construct local DH key

Client <- server: AP_REP with DH Key Exchange in the subkey field

Compute DH Shared Secret Compute DH Shared Secret

Exchange wrapped data, encrypted with the DH shared secret

2.2.3 TLS-KDH

While KRB5-KDH focuses on the combination of Kerberos and DH to achieve a more se-
cure authentication through Kerberos (by enhancing its encryption), TLS-KDH integrates
these properties into the TLS protocol. There are a variety of major advantages in doing
so:

DH is used for encryption key exchange in TLS, enabling stronger encryption and
perfect forward secrecy

Authentication (both server and client) in the TLS handshake can be done based on
Kerberos tickets, enabling both usability (Kerberos tickets might be preferred over
X509 certificates) and security (better encryption of identity information) advantages

Resistance against quantum computer attacks and perfect forward secrecy in such sce-
narios is achieved through a combination of DH key exchange and the added entropy gen-
erated during the TLS handshake. For this purpose a quantum_relief TLS extension is in-
troduced.

These advantages are achieved with minimal changes to TLS, while maintaining the gen-
eral protocol flow, which should allow integration of TLS-KDH into existing TLS implemen-

8 http://tls-kdh.arpa2.net/conceptual.html

15.04.2021 Evaluation&Design_v1.0 Seite 8

tations with manageable effort. In particular, the following changes are made to TLS °:
New cipher suites TLS_DHE_KRB5 *and TLS_ECDHE_KRB5_*;
A new TLS extension for realm names;
New cases for ServerKeyExchange and ClientKeyExchange types;
Incorporating a new calculation method for Diffie-Hellman shared secrets.

The additions to Kerberos to support KRB5-KDH explained above are also required in the
context of TLS-KDH.

Using TLS with the TLS-KDH extensions allows for two different protocol flows, the client-
to-server and peer-to-peer flows. For the purpose of our work only the client-to-server vari-
ant will be considered further. This is in line with today’s scenarios for TLS for authentica-
tion use cases. Here, TLS-KDH offers three features *°:

(1) additional secret entropy for encryption
(2) client authentication through Kerberos Tickets and
(3) server authentication through Kerberos Tickets

The first property enhances the encryption strength of TLS and does not immediately af-
fect the authentication properties, but provides quantum relief for TLS encrypted data. Dur-
ing the TLS handshake Kerberos tickets are supplied by both the server and the client *.
Combined, they can be used to securely derive a shared secret, which is then distributed
using the normal TLS key schedule. This is achieved by using a new quantum_relief ex-
tension in the TLS protocol *2,

The second property is the main focus of our work, since it allows to use the enhanced au-
thentication scenarios in combination with the TLS protocol flow.

The third property is not within scope of our proof of concept implementations.

2.2.4 Related Work

The idea to use Kerberos as authentication for TLS is not new. Simo Sorce (Redhat) pro-
posed a similar idea in RFC2712 *3, which can be considered as a predecessor of the TLS-
KDH work. The main drawback of this RFC is the lack of perfect forward secrecy. It only
covers authentication but not more secure encryption.

There also is a proposal from Josh Howlett (Janet) to integrate GSSAPI into TLS commu-

nication **, which has been rejected by the respective IETF working group. The changes to
the TLS protocol flow are more severe and it also does not directly touch the integration of
DH.

9 http://tls-kdh.arpa2.net/tls-kdh.html

10 https://tools.ietf.org/html/draft-vanrein-tls-kdh-06 Chapter 3.2
11 https://tools.ietf.org/html/draft-vanrein-tls-kdh-06 Chapter 2
12 https://tools.ietf.org/html/draft-vanrein-tls-kdh-06 Chapter 4.1
13 http://tools.ietf.org/html/rfc2712

14 http://itools.ietf.org/html/draft-williams-tls-app-sasl-opt

15.04.2021 Evaluation&Design_v1.0 Seite 9

http://tools.ietf.org/html/draft-williams-tls-app-sasl-opt
http://tools.ietf.org/html/rfc2712
https://tools.ietf.org/html/draft-vanrein-tls-kdh-06
https://tools.ietf.org/html/draft-vanrein-tls-kdh-06
https://tools.ietf.org/html/draft-vanrein-tls-kdh-06

A related topic is Realm Crossover ** which aims to allow using decentral identity
providers, very much like federation use cases in the web SSO protocol SAML2. In Ker-
beros, KXOVER *® can be used to allow secure exchange of key material between different
Kerberos domains, so that clients from one domain can access services in the other do-
main. The project still is a work-in-progress and could be combined with i.e. TLS-KDH to
further improve the security. While we do not explicitly use Realm Crossover in our work,
this might be an interesting addition in the future.

2.3 Satosa

Satosa is an authentication and authorisation proxy — It translates one authorisation proto-
col into another. At the same time, the modular architecture of Satosa also enables the
augmentation and customisation of request and response data.

Satosa is often used to enable communication between a service and an identity provider.
For example, an educational institution may run a service which initially only supports
SAML IdPs for the authentication and authorisation of users. However, in the future a new
protocol may be introduced into the market and will be adapted by many new IdPs, i.e. the
introduction of OAuth2, Social IDs for authentication, etc. In this case, Satosa can help to
translate the SAML-based authorisation to OAuth2.0 or Social-ID-based authorisation.

2.3.1 Architecture
Satosa has a modular structure and consists of the following three layers:

- Frontend: the frontend component receives an authorisation request from a service
provider (SP). The component then converts the authorisation protocol-specific re-
quest to its SATOSA'’s Internal authorisation request format. Once a request is con-
verted to the internal authorization request, a series of (request) microservices (MS)
can be called upon the internal request. The order of the calling sequence is con-
trolled by Satosa proxy configuration files. SATOSA is shipped with some built-in
frontend components: OIDC, SAML.

- Microservices (MS): microservices are located between the frontend and backend
components of SATOSA and comes with a variety of functions. While one microser-
vice may contact LDAP or an external database to fetch some additional attributes
of a user, another may redirect a user to a consent screen to ask permission to re-
lease some of her attributes.

- Backend: the backend component usually connects to an IdP where a user can au-
thenticate themselves. SATOSA includes a couple of backend component imple-
mentations out-of-the box: SAML and OIDC, as well as specific backends for social
IdPs. Nonetheless, SATOSA is not restricted to only connect to an IdP as exempli-
fied in our POC, here it is only necessary to check for the presence of an environ-
ment variable. Based on the value of this variable, the authorisation response is for-
mulated and the flow is completed. The backend is responsible for the validation

15 http://realm-xover.arpa2.net/
16 https://k5wiki.kerberos.org/wiki/Projects/Realm_Crossover _between KDCs

15.04.2021 Evaluation&Design_v1.0 Seite 10

https://k5wiki.kerberos.org/wiki/Projects/Realm_Crossover_between_KDCs
http://realm-xover.arpa2.net/

and finalisation of the authorisation protocol-specific response as well as its conver-
sion into SATOSA'’s internal authorisation response format. After the response is
converted to the internal authorisation response, then again, a series of (response)
microservices can be called upon the internal response, and finally, the internal re-
sponse reaches the frontend component where it is converted to the authorisation
protocol-specific response.

The discussed architecture is illustrated below

Case 1
(OIDC to SAML Translation)
MS1 MS2 MS3
——O0IDC request—p»| ——internal request—p»| ——SAML request—p»
sP <4-0IDC response— l€—internal response— | €—SAML response— dP
MS4
Satosa — Satosa
Frontend Backend
Case 2
(SAML to OIDC Translation) VST
—SAML request—p» ——internal request—p» ——O0IDC request—p>
sP <4-SAML response— l€—internal response— |€—0IDC response—— dP
MS2

While Satosa has a lot of functions making it a so called SP-IDP-proxy (i.e. it can translate
between different frontend SSO protocols and other backend SSO protocols), it of course
also provides the framework for other SSO use cases. For example, the backend can just
do authentication with username and password against an LDAP server. We use this mod-
ularity to implement different backends for various authentication methods.

2.4 Corteza & Crust

Corteza'’ is a low-code development environment which makes building responsive web
applications, i.e. for customer relationship management, a lot easier. It has been devel-
oped by the open source company Crust Ltd. The vision for Corteza is to build a commu-
nity to sustainably provide a digital work platform that is designed from the ground up to
help create a better world. It is thus very much in alignment of the overall goals of NGI and
by extension NGI Pointer, and therefore a good example for evaluating, how new avan-
garde security technologies such as TLS-KDH can be applied to increase it's security.

Corteza includes a mode called Corteza Federation, which enables different Corteza in-
stances to establish a federated network to exchange information. Since Corteza is used
for different kinds of business processes, some of which entail processing very sensitive

17 See https://cortezaproject.org/

15.04.2021 Evaluation&Design_v1.0 Seite 11

https://cortezaproject.org/

data, this kind of federated communication needs to be as secure as possible, even in the
age of quantum computing.

For the purposes of Corteza, TAANGI will reflect on the practical usability of TLS-KDH in
the form of a text deliverable, including an evaluation of how the security can be enhanced
as well as the necessary work to do so.

3 Implementation Concept for the PoC

3.1 Satosa Module for Authentication with TLS

3.1.1 Goal Description

This task is about the development of a backend module for Satosa which can authenti-
cate using TLS client certificates.

As a first step, X509 client certificates can be used, these are sent from a web browser (in-
stalled as client certificates in the browser) and integrated in web-brower-based authenti-
cation flows (e.g. OIDC authorization code flow).

Additionally, support for requests from any other TLS client application (e. g. some server
side implementation) should be supported. In these cases non-web-browser-based au-
thentication flows must be supported (e.g. OAuth2 client credentials flow).

The solution will be the basis for implementation of TLS-KDH, meaning the underlying
technology should be chosen with this goal in mind. Changes required to eventually sup-
port TLS-KDH should be minimal (e.g. using GIUTLS instead of OpenSSL etc.).

3.1.2 Concept

As the main focus of our TLS-KDH PoC is client authentication through Kerberos Tickets,
which is equivalent to client authentication through X509 certificates in the TLS protocol.
Therefore the PoC would begin with the implementation of a TLSBackend in Satosa which
would assert a successful TLS client authentication flow. This backend has no direct tech-
nical link to TLS-KDH but can support that ultimate goal by e.g. bootstrapping the initial de-
velopment environment setup. It can also help in practically realizing the final TLS-KDH
client authentication flow which is the end goal, and may also provide grounds for the
guantitative performance analysis between TLS and TLS-KDH.

Just like TLS, Kerberos, or TLS-KDH is application authenticaion/ authorisation protocol
agnostic; the implementation of the new Satosa TLS backend and then later the Kerberos
backend as part of this PoC is independent of authentication/ authorisation protocol used
in the frontend. The OIDC frontend has merely been selected as an example that how a
high level application authentication/ authorization protocol can be used with a lower level
transport layer authenitcation protocol.

The idea here is to use the OIDC authorisation flow to assert a successful TLS client au-
thentication flow. The overall flow as explained below and illustrated in the diagram:

15.04.2021 Evaluation&Design_v1.0 Seite 12

1. user access RP

2. client makes HTTP request to RP server
—3. RP redirects to OP auth endpoint

14. Successful HTTP
response with ID Token

- 4
cliLnt/t rowser
4. client makes request to 10. client submits a valid gertificate

OP /auth endpoint

\
8. User clicks TLS Client Auth button

9. mod_gnutls requests client
for clients certificate

A4 < S—
A 4

mod_auth_openidc —’

5. Call SATOSA OIDC Frontend 11. mod_gnutls validates the certificate,
sets certificate attributes

7. Redirection to discovery page where buttons will environment variables and
be shown to trigger Client Auth and Kerberos Auth endpoints. call the TLS Backend.

13. Creates OAUTH2
response with ID Token

<
<

4 OpenIDConnectFrontend

6. converts OAUTH2 request
to SATOSA internal request

i

Routing Microservice

12. Retrieves client certificate subject DN
from the environment variables,
set user principal to SATOSA internal response
and call frontend.

t TLSBackend <

SATOSA mod_wsgi

Apache HTTP Server

1. Avuser accesses RP (Relying party). An Apache module, mod_auth_open-idc
would be used, which would serve as RP. mod_auth_open-idc is an authentica-

tion/authorisation module for the Apache 2 HTTP server that authenticates users
against an OP (OpenID Connect Provider).

2. RP redirects the user to the OP which is based on Satosa to fulfil the authorisation
requests. An example of such an authorisation request URL may look like this:

15.04.2021 Evaluation&Design_v1.0 Seite 13

https://op/authorization?
response_type=id_token&scope=openid&client_id=rp&state=f8KCuG
ipIYq4DLLhYeB_pfMRF9s&redirect_uri=https%3A%2F%2Frp %2Fpro-
tected%2Fredirect_uri&nonce=SelLf2JdPuy6I_J16AafCBZUVmb-
vz81JXs2vlcdQ3daA

This means, response_type and value id_token are used to issue an ID token
from the authorisation endpoint and hence no token endpoint would be used.

3. The Satosa OIDC frontend component would process the request, then convert the
OIDC request into an internal request, and then the request would be intercepted by
a new request microservice: discovery router microservice.

4. The discovery router microservice redirects the client to a discovery page: this page
contains two buttons, the first one for TLS authentication, the second for Kerberos
authentication. Each button will initiate the corresponding authentication mechanism
by sending out the appropriate HTTP call, the endpoints of which are registered in
the Satosa backends, namely the TLS backend and the Kerberos backend respec-
tively.

5. The user clicks on the TLS authentication button which makes the following HTTPS
call:

https://op/tls/authorization

In the Apache mod_gnutls module, the above URL is configured to be able to per-
form mutual TLS authentication. This means the request is already intercepted by
the Apache mod_gnutls module before it even reaches Satosa. The Apache
mod_gnutls module would also be in charge of TLS client certificate authentication.

6. mod_gnut'ls will be configured to perform mutual TLS authentication/client authen-
tication via client certificates. This means that mod_gnutls will ask the client (RP)
for a client certificate. If the RP runs in a web browser, the client certificate must
also be configured in the browser. A successful mutual TLS authentication indicates
that the browser has presented a valid/unexpired certificate and possesses the pri-
vate key of the certificate. Moreover, the submitted certificate must be issued from a
valid/recognised CA. This CA will be configured in mod_gnutls via its httpd
GnuTLSClientCAF1ile directive, which would assert the authenticity of the incom-
ing certificate from RP. GnuTLSClientVerify with the value require will be
added only to the protected endpoint of OP: /t1ls/author-ization which would
ask for a valid client certificate from the client. Any requests without a valid client
certificate will be denied. The SSL_CLIENT_VERIFY environment variable will only
be set to the value: SUCCESS.

7. After a successful mutual TLS authentication, mod_gnutls would extract the at-
tributes of the client X509 certificate from the HTTP request and would dump them
in a set of the environment variables. With GnuTLSExportCertificates configu-

15.04.2021 Evaluation&Design_v1.0 Seite 14

https://op/tls/authorization
https://op/tls/authorization
https://op/tls/authorization

ration of mod_gnutls enabled, mod_gnutls exports the same environment vari-
ables to the CGI process as mod_ss1. After this, mod_gnutls will hand over the
authorisation request to Satosa.

8. TLSBackend would cater the request as the /tls/authorization URL is registered in
this component.

9. The environment variable set by mod_gnutls which will hold the value of the cer-
tificate attribute containing the client certificate’s subject DN will be read in TLS-
Backend. This would be considered as the user principal and will be set to Satosa’s
Internal Response data structure which will then be used by the OpenlDConnect
frontend to create the ID token as part of a successful OIDC authorisation re-
sponse.

10.1f the TLS handshake is not successfully completed, for instance due to an invalid
or missing client certificate, or else, the OIDC authorisation request will not even
reach OP (SATOSA), and will result in an authentication failure for the client (RP).

3.1.3 KPI
To evaluate the successful implementation of this module we plan to test the following:

1. Login with the microservice must be possible with TLS client certificates stored in
web browsers. The implementation must be able to successfully authenticate a
user, who presents a valid (i.e. issues by a trusted CA) client certificate, and extract
the user identifier. This should be recognisable both, in the Apache web server logs
and the Satosa application logs.

2. Anon-valid client certificate (i.e. one that is not issues by a trusted CA) must be
blocked from authentication.

3. For testing purposes, the authentication module must be compatible with Satosa'‘s
OIDC frontend. Using the Implicit Flow, the extracted user identifier from the certifi-
cate must be transmitted to the client if the authentication was successful.

3.2 Satosa Module for Authentication with Kerberos

3.2.1 Goal Description

This task is about the development of a backend module for the authentication with Ker-
beros tickets in Satosa.

This module must support the presentation of a valid Kerberos ticket via GSSAPI/SP-
NEGO in modern web browsers using web-browser-based authentication flows (e.g. OIDC
authorization code flow).

Additionally, support of ticket presentation by other means (e.g. SASL) might be neces-
sary, if they are required for the full POC implementation for TLS-KDH. In these flows a

15.04.2021 Evaluation&Design_v1.0 Seite 15

non-web-browser-based authentication flow must be used instead (e.g. OAuth2 client cre-
dentials flow). If this is in fact necessary will be evaluated in the course of the POC.

3.2.2 Concept

This part of the concept will set up a Kerberos5 infrastructure and Kerberos5 authentica-
tion module for SATOSA. The infrastructure to be set up will be similar to the final TLS-
KDH set-up, meaning that as many parts as possible can be re-used.

The components needed are similar to the TLS PoC, with an obvious difference being the
Kerberos5 server (KDC) and the Kerberos SATOSA backend:

Relying Party secured with mod_auth_openidc (same as in TLS PoC)
Web Browser (without client certificate)
OIDC SATOSA frontend (same as in TLS PoC)
Kerberos5 SATOSA backend understanding SPNEGO (to be developed)
Kerberos5 Server (i.e. KDC with AS and TGS)

The SATOSA Backend to be developed will consist of the following parts:
SATOSA within an Apache web server using mod_wsgi

A new backend endpoint protected by mod_auth_gssapi. It is important that this
module is compiled against GnuTLS to allow for a seamless transition to TLS-KDH

Glue Code that extracts the Kerberos User Principal from the Apache Environment
provided by mod_auth_gssapi

Additional configuration parameters to manage the predefined rules to generate a
Kerberos user principal (USER123@REALM) in an account in SATOSA (user123).
This might be possible, for instance, using regular expression substitution

The following steps are necessary for the flow:

0. User authenticates on the client against the KDC and has receives their daily TGT
which is stored in their PC's Kerberos5 credential cache

1. User accesses RP (as in TLS PoC)

2. RP redirects to the SATOSA OIDC Frontend (as in TLS PoC)

3. SATOSA selects the new Kerberos backend via the request microservice for routing
in which the user can click on a button “Authenticate with Kerberos”. Clicking this button
redirects to the Kerberos backend which is protected by mod_auth_gssapi and initiates the
following authentication flow:

1. mod_auth_gssapi will answer the client browser with an HTTP 401 challenge
header that contains the authenticate: negotiate status.

2. The client browser is configured to support SPNEGO and uses the SATOSA server
hostname (satosa.poc.test) to request a service ticket for HTTP/satosa.poc.test@REALM,
i.e. the browser issues an TGS-REQ for the KDC.

3. The KDC replies to the client browser with a TGS-REP with a service ticket, includ-
ing a session key encrypted using SATOSA's long-lived key.

15.04.2021 Evaluation&Design_v1.0 Seite 16

4. The client browser sends the service ticket to mod_auth_gssapi. This SPNEGO to-
ken includes the user's identity.
5. SATOSA will pick up the UserPrincipal set by mod_auth_gssapi in the Apache envi-
ronment and applies its rules to generate a User ID.
4. The generated User ID will be sent to the OIDC frontend
5. The OIDC frontend replies to the RP (as described in the TLS PoC)

This flow is also illustrated the the diagram below:

15.04.2021 Evaluation&Design_v1.0 Seite 17

11. TGS-REP (Service Ticket)
10. TGS-REQ (HTTP/satosa.poc.test@REALM)

1. user access RP

2. client makes HTTP request to RP server
—3. RP redirects to OP auth endpoint

4. client makes request to
OP /auth endpoint

8. User clicks Kerberos Auth button

response with ID Token

16. Successful HTTP

mod_auth_openidc

A4

7. Redirection to discovery page where buttons will
be shown to trigger Client Auth

5. Call SATOSA OIDC Frontend

and Kerberos Auth endpoints.

9. mod_auth_gssapi
answers

| with HTTP 401

Negotiate challenge

12. SPNEGO token with
the Service ticket

15. Creates OAUTH2
response with ID Token

<
<«

14 OpenlDConnectFrontend

6. converts OAUTH2 request
to SATOSA internal request

l

14. Retrieves User ID from the
UserPrincipal environment variable,
set it to SATOSA internal response

and call frontend.

KerberosBackend <

Routing Microservice

13. mod_auth_gssapi validates the
SPNEGO token and the residing ticket,
sets UserPrincipal environment
variable and calls the TLS Backend.

SATOSA mod_wsgi

15.04.2021

Apache HTTP Server

Evaluation&Design_v1.0

Seite 18

3.2.3 KPI
To evaluate the successful implementation of this module we plan on testing the following:

1. Login with the microservice must be possible with Kerberos tickets via SPNEGO/
GSSAPI in web browsers. The implementation must be able to successfully authen-
ticate a user, who presents a valid Kerberos5 service ticket, and extract the user
identifier. This should be recognisable both, in the Apache web server logs and the
Satosa application logs.

2. Anon-valid Kerberos5 service ticket (i.e. expired or issued for another service) must
be blocked from authentication.

3. For testing purposes, the authentication module must be compatible with Satosa'‘s
OIDC frontend. Using the implicit flow, the extracted user identifier from the ticket
must be transmitted to the client if the authentication was successful.

3.3 Satosa Module For Authentication With TLS-KDH

3.3.1 Goal Description

The scope of this task is a PoC implementation of a backend module in Satosa to support
authentication via TLS-KDH. For this purpose, the modules for TLS and Kerberos authenti-
cation will be reused as much as possible.

It is yet to be determined to what extent this is actually possible. Ideally, the demonstration
of the TLS-KDH flow is done in web-browser-based authorisation flows (e.g. OIDC id_to-
ken or authorisation code flows) with the TLS-KDH client as the browser which uses Ker-
beros tickets. As many browsers currently do not support this it is uncertain whether this
goal can be reached.

Keeping in mind the aforementioned uncertainties, the plan is to complete the PoC pursu-
ing the following two sub-goals instead:

1. Asimple client-server hello world application using the TLS-KDH protocol.

2. A proxy application listening to HTTPS/TLS requests from a client (browser), sends
out HTTPS/TLS-KDH requests to OP server, then receives HTTPS/TLS-KDH re-
sponse from the OP server, and finally responds to the client on HTTPS/TLS with a
HTTP status code and the HTTP headers sent by the OP.

The completion of goal 1 is the minimal requirement for this PoC, whereas accomplishing
thesecond goal would be a question of time and access to the necessary technology.

We are aware that as of now the TLS-KDH specification is still undergoing changes; they
are expected to be finalised within the next couple of months. The current plan is based on
version 6 of the IETF draft and for now we plan our PoC with this version. Based on the
exact timing we might deviate from some implementation details to better match the final
specification. However, this is only possible if specification and the according changes to
GnuTLS are finalised before we start implementing our PoC for TLS-KDH.

15.04.2021 Evaluation&Design_v1.0 Seite 19

3.3.2 Concept

3.3.2.1Goal 1 - Client-Server Hello World Application

A simple client-server hello world application will be created as part of this goal. The appli-
cation uses the already created TLS-KDH prototype which is based on GnuTLS. This
would be implemented in the programming language C in line with the GnuTLS program-
ming interface.

The client will initiate a TLS-KDH session with the server: this would include all the TLS 1.3
handshake steps with the inclusion of the quantum_relief TLS extension in the client
hello and server hello TLS messages. Furthermore, the server-side of the application will
be configured to request a CertificateRequest TLS message from the client to verify the
client’s identity. The client would subsequently send the certificate and CertificateVerify
messages to the server. For the client_certificate_type, a Kerberos ticket would
be used. At the client-side, KDC would be configured to generate tickets for the initial client
hello TLS message as well as the subsequent Certificate TLS message.

Once the TLS-KDH session is established, the client would send the text, "Hello" and the
server would reply with the text, "World". The logging would be added to the application to
assert the proper execution of the TLS-KDH handshake.

The following diagram illustrates the described flow:

ClientHello with TLS extension = quantam_relief,
Peernametype = none, gh_method = kdh,
and opt_ticket = ticket received in Step 1.

ServerHello with TLS extension = quantam_relief,
** o gh_method = kdh, and S
opt_ticket = <zero length byte string>

A

CertificateRequest message

Request a Kerberos ticket with client identity:

Create Kerberos Authenticator with client identity

Certificate and CertifcateVerify messages with
Kerberos ticket and Kerberos Authenticator respectively

A

Finished message

Encrypted HTTP message

I
I
I
I
|
I
I
]
I
|
I
T
I
I
i
[}
: Finished message
I
I
I
[}
T
I
]
I
I
i
T
I
I
I
I
1

15.04.2021 Evaluation&Design_v1.0 Seite 20

3.3.2.2Goal 2 - TLS-KDH Proxy

The part of this goal is to test HTTPS over TLS-KDH. To test such an HTTPS flow, the
idea is to add a third button to the discovery page mentioned under section 3.1 and section
3.2, clicking on this button would continue the id_token flow via TLS-KDH connection with
the new TLS-KDH Satosa backend. The steps for this flow are specified below. The initial
steps up until the flow reaches the discovery page would be the same as the steps 1-4
under section 3.1.2, hence the following steps pick up at the discovery page.

1.

The user clicks on the TLS-KDH authentication button on the discovery page which
makes the following HTTPS call: https://op/tls-kdh/authorization

The HTTPS request is intercepted by the TLS-KDH proxy which is implemented in
the programming language C, using a gnutls fork with TLS-KDH support. The re-
guest receiving end of the proxy adheres to HTTPS/TLS 1.3 requests. At this point,
the proxy already has an open connection to the OP server. This connection is
based on TLS-KDH (with GNUTLS_ENABLE_KDH, GNUTLS_ENABLE_QUAN-
TUM_RELIEF flags set). The request receiving end of the proxy extracts all the
HTTP request headers and forwards the request to the OP using its previously es-
tablished TLS-KDH connection. The TLS-KDH proxy interacts with KDC to fetch
server and client tickets to establish the TLS-KDH connection.

OP server uses the mod_gnutls apache module with a GnuTLS fork including TLS
KDH support. mod_gnutls would perform the TLS 1.3 handshake with the
quantum_relief TLS extension. The mod_gnutls is also configured in a way that it
will ask the client for its identity using the CertificateRequest TLS message.

If the TLS 1.3 handshake is successful, the request reaches the TLSKDH Satosa
backend. However, if the TLS handshake is not successful no matter why, the OIDC
authorisation request will not even reach OP (SATOSA) and will result in an authen-
tication failure for the client (RP).

The environment variable set by mod_gnutls which carries the certificate attribute
containing the client ticket's principal is processed in the TLS-KDH backend and is
in compliance with Satosa’s internal response data structure. Consequently, the
OpenIDConnect frontend utilises this to generate the ID token as part of a success-
ful OIDC authorisation response.

The OIDC id_token response is transmitted back to the TLS-KDH proxy via
mod_gnutls.

The proxy extracts the HTTP response headers which also includes the location
header with the redirect URL and id_token, the URL encoded query parameter.
Then, the proxy uses its other connection with TLS 1.3 to reply to the client with the
same HTTP status code as the one originally sent by the OP including all HTTP re-
sponse headers.

15.04.2021 Evaluation&Design_v1.0 Seite 21

The following high-level architecture diagram illustrates how the execution of the above-
mentioned steps proceeds across various components of the PoC system:

15.04.2021 Evaluation&Design_v1.0 Seite 22

2. client makes HTTP request to RP server
3. RP redirects to OP auth endpoint

1. user access RP

>
€
»
'

client/browser

8. User clicks TLS KDH
Auth Auth button:
OP /auth/tls-kdh (TLS 1.3)

14. HTTP response
with ID Token (TLS 1.3)

A4
mod_auth_openidc

KDC

4. client makes request to
OP /auth endpoint (TLS 1.3)

9.1 Request 2
server ticket

9.2 Request
client ticket

Request receiving end with

TLS 1.3

Response receiving end with

TLS 1.3 and TLS quantum_relief extension

. Redirection to discovery page

9. OP /auth/tls-kdh (TLS-KDH)

TLS KDH Porxy

mod_gnutls with TLSKDH

13. HTTP response
with ID Token (TLS-KDH)

support

5. Call SATOSA OIDC Frontend

12. OAUTH2 response
with ID Token

< OpenlIDConnectFrontend

11. Retrieves user principal
from the env variables,

and call frontend.

6. converts to internal request

v

set it to SATOSA internal response—

TLSKDHBackend &

Routing Microservice

10. successful TLS KDH

handshake,
sets principal
env variables

SATOSA mod_wsgi

15.04.2021

Apache HTTP Server

Evaluation&Design_v1.0

Seite 23

3.3.3 KPI

The success of the implementation will be measured based on the following two goals.
For goal 1:

1. In a demo infrastructure authentication with TLS-KDH must be possible. By present-
ing a valid Kerberos5 ticket and using the TLS-KDH protocol flow, authentication in
a simple client-server application must be possible. During the authentication the
user identifier must be extracted from the Kerberos5 ticket and observable in at
least the TLS server logs.

2. The same setup must block authentication in case of misusage of the TLS-KDH
flow or a non-valid Kerberos5 ticket (e.g. expired)

For goal 2:

1. This solution must fulfill the same requirements, further it also must integrate well
into the Satosa OIDC frontend. For this purpose proxying the authentication request
via a proxy solution is acceptable. The extracted user identifier from the Kerberos5
tickets used on the proxy must be included in Satosa‘s OIDC response when using
OIDC implicit flow.

3.4 Evaluation of TLS-KDH for Corteza

The evaluation of using TLS-KDH in other scenarios, such as Corteza, will be done in a
later deliverable.

4 Summary

We are planning three PoC implementations of authentication methods in the open source
software Satosa. TLS client certificates and Kerberos attempt to integrate present day au-
thentication mechanisms into Satosa and can be used straight away. This further en-
hances the use cases for Satosa to provide more flexibility also in non-proxy (i.e. dele-
gated authentication via SSO protocols) scenarios.

The third PoC is concerned with the evaluation of the protocol, and existing prototype im-
plementations for TLS-KDH and their usage in Satosa. While our solution is not intended
for widespread usage today, the output will be crucial moving forwards towards ultimately
adopting TLS-KDH.

A fourth deliverable will be the theoretical reflection on the applicability of this avant-garde
technology to a modern business work platform like Corteza.

15.04.2021 Evaluation&Design_v1.0 Seite 24

	1 Introduction
	1.1 Purpose Of This Document
	1.2 Introduction And Problem Statement
	1.3 NGI-Pointer
	1.4 TA4NGI

	2 Technology
	2.1 Related Technology
	2.1.1 Kerberos
	2.1.2 TLS
	2.1.3 Diffie-Hellman

	2.2 TLS-KDH
	2.2.1 Motivation
	2.2.2 KRB5-KDH
	2.2.3 TLS-KDH
	2.2.4 Related Work

	2.3 Satosa
	2.3.1 Architecture

	2.4 Corteza & Crust

	3 Implementation Concept for the PoC
	3.1 Satosa Module for Authentication with TLS
	3.1.1 Goal Description
	3.1.2 Concept
	3.1.3 KPI

	3.2 Satosa Module for Authentication with Kerberos
	3.2.1 Goal Description
	3.2.2 Concept
	3.2.3 KPI

	3.3 Satosa Module For Authentication With TLS-KDH
	3.3.1 Goal Description
	3.3.2 Concept
	3.3.2.1 Goal 1 – Client-Server Hello World Application
	3.3.2.2 Goal 2 – TLS-KDH Proxy

	3.3.3 KPI

	3.4 Evaluation of TLS-KDH for Corteza

	4 Summary

